High Technology Materials
Morgan Advanced Materials, a member company of the Morgan Crucible Group, is best known as a world leader in the manufacture of what have become known as ‘mechanical carbon’ components for the engineering industries -- a business in which it has been engaged for the past 80 years. Morgan Advanced Materials manufacturing programme includes such complementary high technology engineering materials as silicon carbide, filled ptfe, and graphites.

The high technology materials of the Morgan Advanced Materials range are categorised by the following prefixes:

CY amorphous carbon-graphite
EY electrographites
MY metallised carbon
HY filled p.t.f.e. and resin bonded composites
P silicon carbides

Whilst the emphasis of this brochure centres on mechanical carbon, it contains information on the complete range of Morgan Advanced Materials, high technology engineering materials.
it's nature and structure

Elemental carbon exists naturally in many parts of the world in the forms of graphite and diamond. It also exists industrially in the forms of a variety of cokes. When mined, graphite is not particularly useful as an engineering material because of its softness, high impurity level and limited size. Cokes derived from coal sources, residues from oil distillation (petroleum cokes) and carbon blacks (obtained from burning oil and gases in limited supplies of air) are hard and vary in purity and structure depending on the source.

The manufacture of industrial carbon and graphite materials has developed over the years — the properties of the resultant products being considerably greater than those of the source materials. By judicious selection of raw materials, and by using a variety of manufacturing processes, carbon and graphite may be modified to provide products suitable for application in a wide variety of engineering and chemical environments.

The raw materials are powdered and bonded together with a pitch or tar and then moulded or extruded under pressure to form a convenient size and shape. The resulting product is fired in a protective atmosphere to approximately 1000°C. During this process, the tar and pitch are converted to a coke, thereby cementing the particles of the other raw materials together, to form a cohesive mass. Such a product is known as amorphous carbon or carbon graphite, depending on the raw material selected.

Some grades of carbon are further heat-treated to temperatures of up to 2500°C at which level the amorphous carbon is transformed into a crystalline electrographite. This material has greater purity, improved electrical and thermal conductivities and better oxidation resistance.

Carbon and graphite materials that are produced by this means are porous and can be impregnated with synthetic resins or metals. The impregnants confer increased strength, lower permeability and improved wear-resistance characteristics to the basic carbons.

Carbon and graphite may readily be machined to close tolerances using normal workshop techniques of turning and grinding.

Most carbon components are individually designed to meet customers' requirements and are machined from blanks of the appropriate grade.

Components required in exceptionally large quantities may be mass produced by 'pressing to shape' — a manufacturing method which reduces or eliminates machining. It is essential that the Company's specialists are involved at the design stage, so as to derive maximum benefit from the process.

it's properties

Carbon possesses a unique combination of properties. Of particular interest to the engineer is that:

it is
- self-lubricating
- non-galling
- dimensionally stable
- chemically inert
- easily machined
- non-contaminating
- resistant to oxidation

and has
- low thermal expansion
- high thermal conductivity
- good thermal shock resistance

These features enable carbon to be used in a vast range of industrial applications where conventional lubricants cannot be used because:
- of their nuisance or the risk of contamination
- of high temperatures
- the environment is contaminated with corrosive fluids
- the components are immersed in incompatible liquids
sealing rings

The ‘rubbing pair’ is the heart of any mechanical seal and in the majority of designs one member of this pair will be carbon, where its unique properties are fully exploited.

Morgan Advanced Materials is the first choice of many manufacturers for applications ranging from the mechanical seal in a washing machine or car coolant pump to that in a pump operating in the hostile environment of a North Sea oil rig, in the stern shaft or in the main shaft seal of an aircraft gas turbine.

Morgan Advanced Materials seal rings are machined to close tolerances from blank material or pressed-to-shape when the demand is for large quantities. All are impregnated with either resin or metal to ensure impermeability and are lapped, when necessary, to within three helium light bands of flatness.

Morgan Advanced Materials seal rings are compatible with a wide range of metallic and ceramic counterfaces including silicon carbide.

bearings

Morgan Advanced Materials have progressively developed carbon bearings over the past 50 years and currently these are used in a wide variety of applications where the operating conditions preclude the use of more conventional materials.

Some typical applications are:
- aircraft engine fuel pumps
- submersible pumps
- canned motor pumps
- seal-less pumps
- chain grate stokers
- veneer drying ovens
- conveyors

Morgan Advanced Materials bearings are usually press, shrink fitted or bonded directly into their housings. They are additionally available as sub-assemblies fitted into metal shrouds or as conveyor hanger bearings in self-aligning assemblies.
gland rings

Carbon gland rings are widely used as shaft seals in fans, and water and steam turbines. They are fabricated in segments which form a complete ring when encircled by a garter spring. Extremely fine tolerances are observed in their manufacture and a feature of segments manufactured by Morgan Advanced Materials is their interchangeability with rings of like design.

The segments of a traditional fan or steam turbine gland are butt-jointed and, if conditions warrant, several rings are used in tandem. This design provides an efficient seal under stable running conditions.

Labyrinth designs incorporating graphite improve sealing efficiency in both steam and gas turbines. Rubbing contact between the shaft fins and graphite rings cause no damage. Very small radial clearances may, therefore, be tolerated resulting in a significantly reduced leakage rate. A special grade of graphite has been developed which is able to withstand both the high temperatures and pressures which are obtained in this application and is sufficiently soft to permit the rotating shaft fins to cut into the stationary gland ring. Carbon glands manufactured by Morgan Advanced Materials are also supplied for water turbines in hydro-electrical installations. The wedge-type ring is a typical Morgan design which, because of its improved efficiency, has been adopted as standard by many manufacturers in preference to the tenon-jointed ring. The ends of the segments of a wedge ring are bevelled and the wedge pieces which are interposed between the segments, move outwards to accommodate wear.

rotary pump vanes

Carbon is ideally suited for vanes used in rotary pumps and compressors for handling non-lubricating liquids and gases and where an oil-free delivery is essential. In these applications the self-lubricating properties of Morgan Advanced Materials are critical and, as no odour or taste is imparted to the fluids with which it is in contact, is ideal for food processing plants.

Morgan Advanced Materials is dimensionally stable both through a wide temperature range and in a variety of fluids. Very fine vane-to-rotor slot clearances may, therefore, be set and maintained, thus ensuring maximum efficiency.

Morgan Advanced Materials vanes are used in many applications including:

- air pumps for the printing industry
- automotive fuel pumps
- bulk liquid metering
- garage forecourt pumps
- aircraft fuel tank metering
- drinks vending machines
A variety of counterface materials, pressures, fluids, speeds and temperatures are accommodated by the versatility of the Morgan range of Carbon Seals. The applications range from dish-washer seals to stern shaft seals for nuclear submarines.

Pumping equipment fitted with Morgan Advanced Materials Seal Faces is capable of handling a wide variety of materials including:

- PETROCHEMICALS
- ACIDS
- ALKALIES
- SOLVENTS
- FOODSTUFFS
- WATER
- REFRIGERANTS

Everybody involved with seals, from designers to users, can benefit from the excellent friction properties and high chemical resistance afforded by Morgan materials.

For generations designers and engineers have used Morgan expertise and materials to solve their tribological problems. Many of the materials have been tested and approved by major companies in the Aerospace, Nuclear, Sealing and Pumping Industries.

This experience, backed by on-going research and development programmes together with first class technical facilities, make Morgan Advanced Materials the Problem Solvers for Industry.

The company is ISO9001 2000 Registered.
CARBON BEARINGS
1 INTRODUCTION
Carbon and Graphite, manufactured by Morgan Advanced Materials is self lubricating, chemically inert, dimensionally stable, non hygroscopic and is highly wear resistant, which makes it ideal for use in hostile environments where conventional bearings cannot be used.
Typical of these are where:
1 oil contamination cannot be tolerated
2 temperatures exceed the limits of normal lubricants
3 operation is in a non-lubricating fluid
Morgan Advanced Materials’ bearings are capable of sustaining PVI’s (kg/cm² X m/s) of 1.5 at temperatures of 500°C in an oxidising atmosphere and well above 350 PV in non-lubricating liquids.

2 MATERIALS
Carbon grades
The selection of the appropriate Morgan grade of carbon is dependent upon the bearing operating conditions and is usually from one of the following four categories:
1 Cy2 amorphous carbon/graphite
 Cy10 maximum temperature 300°C
2 CY2C amorphous carbon/graphite, resin impregnated
 CY10C maximum temperature 270°C
3 MY3A amorphous carbon/graphite, copper impregnated
 MY10A maximum temperature 300°C
4 EY9106 electrographite maximum temperature
 500°C oxidising atmosphere
 3000°C non-oxidising atmosphere
(NB: Morgan Grade Data Sheets giving complete physical properties are available on these and other materials).

Shaft materials:
The shaft to run against a Morgan Advanced Materials bearing should be hard and corrosion-resistant such as austenitic iron, hardened stainless steel, thick chrome plate or stellite. Non-ferrous metals and mid steel should be avoided.
A shaft surface finish of between 0.25-0.50 microns Ra is recommended although for lighter loaded applications, 2 microns Ra may be accepted.

3 OPERATING LIMITS
Dry-running
The PV curves shown below provide a guide for the continuous operation of Morgan Advanced Materials bearings. For short periods or interrupted operations, these recommendations may be exceeded by a generous margin.

PV CURVES - for continuous dry operation and steady loads.
Wet running
Morgan Advanced Materials bearings running in liquids of high lubricity are capable of achieving performances approximating to those of conventional metal bearings. In more mobile liquids such as water, petrol and kerosene the special characteristics of Morgan Advanced Materials, allied to careful design, permit operations at \(P_r \)'s of 350 kg/cm\(^2\) m/s and above.

Friction
The coefficient of friction is not a physical property of a material and depends on the nature and operating conditions of a rubbing pair. It will vary with the environment, load, speed, surface finish etc. In dry operations a Morgan Advanced Materials bearing running against a hard well finished shaft may be expected to show a coefficient of friction varying between 0.10 under light and 0.25 under heavy loads. The characteristics of the liquid will determine the coefficient of friction in a fully lubricated application whilst under boundary layer conditions it will probably be within the range of 0.01 to 0.10.

4 DESIGN

General
Well proven practices should be followed when designing a Morgan Advanced Materials bearing. It should be as simple as possible and unnecessarily close tolerances avoided. The bearing must be fully supported in its housing and must not be retained by grub screws, pins or similar devices. In addition:

1. Flanged bearings are not recommended, axial loads should be carried on the end of a plain bearing or a separate thrust washer provided.
2. No oil, grease or abrasive dust should contaminate the rubbing surfaces of a dry bearing.
3. An adequate flow of liquid must be maintained at the rubbing surfaces of a lubricated bearing and any grooves provided to facilitate this must not interrupt the development of a hydrodynamic liquid film.

Dimensions
Morgan Advanced Materials bearings are available with a maximum length of 100mm and 250mm outside diameter. The curve indicates recommended wall thickness.

WALL THICKNESS CHART

Fitting
Morgan Advanced Materials bearings should always be fully supported. It is desirable, therefore, that they be either press- or shrink-fitted into metal housings. Press-fitting may only be employed for small bearings where the interference will not exceed 0.15mm. The coefficient of thermal expansion of carbon is about a quarter that of steel. In consequence shrink-fitting is essential for high temperature operations which, by pre-stressing the carbon, provides the added benefit of ensuring approximately constant running clearance. In those applications where shrink-fitting into a housing is impracticable, Morgan Advanced Materials bearings should be shrunk into a separate sleeve which in turn may be located in the main housing by conventional means.

Running clearances
The recommended running clearances for Morgan Advanced Materials bearings are indicated in the curve below.
CARBON GLAND RINGS
1 INTRODUCTION

The self-lubricating properties of carbon make it an ideal material for both contact and non-contact types of gland rings. Carbon gland rings are used for sealing liquids and gases, restricting leakage to a minimum. They provide a simple and effective seal on impulse turbines, low pressure fans and blowers, water turbines and the like.

2 APPLICATIONS

2.1 Steam and Gas

For steam and gas applications, non-contact gland rings, which seal by throttling, are used. With these rings, the bore of the carbon ring is designed to match the shaft diameter at the operating temperature.

For assembly reasons the carbon rings are made in segments, and are held in position in the housing, and a stop pin is fitted to each ring to prevent it rotating with the shaft. Either rectangular section rings or bevel section rings may be used; the segments are usually butt jointed. A bevel-section gland ring is shown in Figure 1.

2.2 Water Turbines

Segmental carbon rings with special joints, enabling the rings to maintain contact with the shaft as wear of the carbon occurs, are widely used for water turbines. The majority of rings supplied conform broadly to either one of two patterns - the tenon type or the wedge type. Rings of the same type may differ in detail although they will generally comply with the following descriptions.

2.2.1 Tenon Jointed Rings

A gland arrangement using a tenon jointed ring is shown in Figure 2. Each segment is held to its neighbour by an integral tongue fitting into a recess. The tenon joint itself can be either single or double and segments of both types are shown in Figure 2. A garter spring holds the segments together, and also loads them against the housing, so that a static seal across the radial face of the carbon is obtained.

A small gap is left in each joint permitting self adjustment of the ring. As wear of the carbon takes place, the segments move radially inwards under the action of the water pressure and the garter spring. Carbon rings of this kind are thus contact seals.

2.2.2 Wedge Rings

Carbon wedge rings are sometimes favoured as alternatives to tenon rings on water turbines. A typical wedge ring arrangement is shown in Figure 3.

A wedge ring consists of a series of long segments and short wedge pieces. The ends of the segments are angled to present sliding surfaces to the tapered wedge pieces. A garter spring holds the segments and wedge pieces in position and stop pins locate the long segments in the housing.

The rings are fitted in pairs and displaced from each other, so that the long segments of one ring cover the wedge pieces of the adjacent ring. In this manner, no direct leakage path through a pair of rings exists. Axial compression springs are fitted in recesses in the gland housing to act on each pair of rings, so as to effect a seal across the radial face.
2.2.3 Radial Face Seals

Radial face seals are also employed in Francis turbines, and often take the form of two concentric carbon rings running against a counterface fixed to the turbine shaft. The rings are located in a suitable stationary housing and are initially loaded against the counterface by compression springs. A typical radial face seal is shown in Figure 4.

The diameters of the rings involved usually necessitate segmental construction with the joints of the inner and outer rings staggered relative to each other. The segments are located with stop keys to prevent rotation of the carbon ring in the housing.

A circumferential annulus is formed between the two rings which is fed with clean water. The clean water pressure is restricted to the minimum required to prevent dry running of the rings and generally does not exceed an over pressure of 2 kgf/cm². It is essential that an adequate supply of clean water is available.

2.3 Carbon Labyrinth Glands

Carbon labyrinth glands are similar in function to metal labyrinth, but because much smaller radial clearances can be used, higher pressures, though a shorter axial length can be sealed effectively. They are used as main shaft seals in gas turbines, auxiliary steam turbines, rotary compressors and blowers. A typical carbon labyrinth is shown in Figure 5.

3 CARBON GRADES

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Hardness</th>
<th>Density 10^6 kg/m³</th>
<th>Transverse strength 10^6 N/m²</th>
<th>Compressive strength 10^6 N/m²</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY1</td>
<td>Amorphous carbon/graphite, maximum temperature 300°C</td>
<td>80</td>
<td>1.70</td>
<td>280</td>
<td>4000</td>
<td>840</td>
</tr>
<tr>
<td>CY2</td>
<td>Amorphous carbon/graphite, maximum temperature 300°C</td>
<td>80</td>
<td>1.70</td>
<td>315</td>
<td>4000</td>
<td>840</td>
</tr>
<tr>
<td>CY2F</td>
<td>Amorphous carbon/graphite, wax impregnated, maximum temperature 300°C</td>
<td>80</td>
<td>1.70</td>
<td>315</td>
<td>4000</td>
<td>1020</td>
</tr>
<tr>
<td>CY2C</td>
<td>Amorphous carbon/graphite, resin impregnated, maximum temperature 270°C</td>
<td>80</td>
<td>1.84</td>
<td>560</td>
<td>8000</td>
<td>1830</td>
</tr>
<tr>
<td>CY2W</td>
<td>Amorphous carbon/graphite, resin impregnated, maximum temperature 300°C</td>
<td>74</td>
<td>1.84</td>
<td>360</td>
<td>6000</td>
<td>1270</td>
</tr>
<tr>
<td>EY9106</td>
<td>Electrographite, maximum temperature 600°C, in an oxidizing atmosphere</td>
<td>50</td>
<td>1.72</td>
<td>300</td>
<td>4200</td>
<td>600</td>
</tr>
</tbody>
</table>

Condensed summary of physical property data for carbon grades.
SPECIAL CARBON VANES
1 INTRODUCTION
Morgan Advanced Materials vanes are made in a range of carbon materials (carbon-graphite, metal impregnated carbon-graphite and resin bonded graphite) to meet many different application requirements. All Morgan Advanced Materials grades retain the basic properties which make carbon unique as an engineering material, and particularly suited for vanes which may operate in conditions beyond the limits of other materials.

2 SELF-LUBRICATING
Carbon vanes are self-lubricating, and therefore ideal for pumps handling liquids whose lubricating properties are poor, such as petrol. They can also operate un lubricated in compressors to deliver air or gas uncontaminated by lubricating oil or grease, in which case the carbon gives a fine polish to the cylinder wall which reduces the wear rate of the vane after bedding in to almost negligible proportions.

3 CHEMICALLY INERT AND NON-TOXIC
Carbon vanes are chemically inert and non-toxic and cannot contaminate the liquid or gas being handled. They can safely be used in food processing equipment and in other fields where purity is essential.

4 UNAFFECTED BY MOST ACIDS, ALKALIES, PETROLS OR AQUEOUS SOLUTION
Carbon vanes are totally unaffected by water, most acids, alkalis or oil solvents such as petrol or paraffin. In these conditions, the liquid can reduce friction and wear by providing lubrication between vane and rotor slots and vane top and cylinder wall.

5 HIGH MECHANICAL STRENGTH
One of the most important requirements for vane materials is high mechanical strength. Carbon vanes meet this requirement. Their strength is indicated by the pressures regularly handled which range from 3.2 kgf/cm² (45lb/in² down to high vacuum conditions, with peripheral speeds up to 19.5m/sec (3838.5 ft/min).

6 CYLINDER
It is important to use the correct cylinder material for operation with carbon vanes. Where possible a corrosion-resistant metal should be used, and for optimum results this should be as hard as possible. Suitable materials are:

- 'Ni-resist' cast iron
- Cast iron, minimum of 220 Brinnell
- 'Mecanite' cast iron
- Hard stainless steel, minimum of 420 Brinnell
- 'Nitralloy steel', fully hardened
- Hard chrome plating 0.13 to 0.25 mm (0.005 to 0.010 in)
- Hard alloy e.g. cast aluminium, aluminium oxide coated

The cylinder wall should be fine ground and honed, if possible, to a surface finish of 15/25 microinch CLA.

7 ROTOR
This should also be of corrosion-resistant material. Each slot should be well finished and free from any surface roughness.

8 APPLICATIONS
The applications where carbon vanes are being used are extensive. Typical of these are:

- Dry running rotary compressors and vacuum pumps
- Mobile compressors fitted to bulk delivery tankers
- Printing machinery
- Spray paint equipment
- Packing machinery
- Food processing equipment
- Wet running vane pumps and meters
- Automotive diesel fuel pumps
- Kerosine petrol pumps
- Drink vending machines
- Fuel tanker meters.
9 PHYSICAL PROPERTIES

The figures quoted are for the grades most commonly used in the manufacture of vanes. These are typical values and allowance must be made for the variability attainable between individual batches and measurements.

The choice of the correct Morgan Advanced Materials grade depends on the operating conditions involved: whether liquid or gas is handled, the peripheral speed, the differential pressure, the type of rotor employed and the disposition of the slots (whether radial or inclined), maximum permissible vane thickness and general design of the vanes. Our highly skilled engineers are available to give advice on the correct choice of material.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Bulk density (kg/m³ x 10²)</th>
<th>Torsional bend strength (MPa)</th>
<th>Compressive strength (MPa)</th>
<th>Impact strength (kJ/m²)</th>
<th>Thermal expansion (x10⁻⁶ °C⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY10C</td>
<td>Carbon graphite, resin impregnated</td>
<td>1.80</td>
<td>84</td>
<td>207</td>
<td>2.3</td>
<td>9.0</td>
</tr>
<tr>
<td>CY10F</td>
<td>Carbon graphite, carbonised impregnant</td>
<td>1.65</td>
<td>53</td>
<td>138</td>
<td>0.8</td>
<td>3.6</td>
</tr>
<tr>
<td>MY10D</td>
<td>Carbon graphite, copper/lead impregnated</td>
<td>2.50</td>
<td>96</td>
<td>245</td>
<td>2.8</td>
<td>5.0</td>
</tr>
<tr>
<td>HYX67</td>
<td>Resin bonded graphite</td>
<td>1.88</td>
<td>75</td>
<td>114</td>
<td>2.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>
BURSTING DISCS

...YOUR SAFEGUARD!
Additional Products Manufactured by Morgan Advanced Materials

• Graphite bursting discs.

• Molten metal pumps

• Continuous casting dies

• Moulds and crucibles

• Degassing tubes

• Distribution rings

• Graphite anodes

• Sintering products

• Carbon and Graphite heating elements
LOCIATIONS
& contact details

Johannesburg:
149 South Rand Road
Tulisa Park 2197
T: (011) 296-0000
F: (011) 613-1010
E: africa.sales@morganplc.com

Cape Town:
24 Transvaal Street
Paarden Eiland 7405
T: (021) 511-9877
F: (021) 511-9724
E: capetown.office@morganplc.com

Durban:
196 Esther Roberts
Glenwood
Durban
T: (031) 201-2443
F: (031) 201-2637
E: durban.office@morganplc.com

Pretoria:
1501 Rodger Dyason Road
Pretoria West 0183
T: (012) 756-1178
F: (012) 386-7232
E: pretoria.office@morganplc.com

Welkom:
36 Keerom Street
Voorspoed Welkom
T: (057) 353-2668/9
F: (057) 357-4124
E: welkom.office@morganplc.com